Legendre-Gould Hopper-Based Sheffer Polynomials and Operational Methods

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multi-variable Gould-Hopper and Laguerre polynomials

The idea of monomiality traces back to the early forties of the last century, when J.F. Steffensen, in a largely unnoticed paper [1], suggested the concept of poweroid. A new interest in this subject was created by the work of G. Dattoli and his collaborators [2], [3] It turns out that all polynomial families, and in particular all special polynomials, are essentially the same, since it is poss...

متن کامل

Legendre polynomials: Lie methods and monomiality

We combine the Lie algebraic methods and the technicalities associated with the monomialty principle to obtain new results concerning Legendre polynomial expansions. c © 2007 Elsevier Ltd. All rights reserved.

متن کامل

On an Hypercomplex Generalization of Gould-Hopper and Related Chebyshev Polynomials

An operational approach introduced by Gould and Hopper to the construction of generalized Hermite polynomials is followed in the hypercomplex context to build multidimensional generalized Hermite polynomials by the consideration of an appropriate basic set of monogenic polynomials. Directly related functions, like Chebyshev polynomials of first and second kind are constructed.

متن کامل

Wavelets Based on Legendre Polynomials

We construct an orthogonal wavelet basis for the interval using a linear combination of Legendre polynomial functions. The coefficients are taken as appropriate roots of Chebyshev polynomials of the second kind, as has been proposed in reference [1]. A multi-resolution analysis is implemented and illustrated with analytical data and real-life signals from turbulent flow fields.

متن کامل

Riordan Arrays, Sheffer Sequences and “Orthogonal” Polynomials

Riordan group concepts are combined with the basic properties of convolution families of polynomials and Sheffer sequences, to establish a duality law, canonical forms ρ(n,m) = ( n m ) cFn−m(m), c 6= 0, and extensions ρ(x, x − k) = (−1) xcFk(x), where the Fk(x) are polynomials in x, holding for each ρ(n,m) in a Riordan array. Examples ρ(n,m) = ( n m ) Sk(x) are given, in which the Sk(x) are “or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2020

ISSN: 2073-8994

DOI: 10.3390/sym12122051